If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15m^2-23=0
a = 15; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·15·(-23)
Δ = 1380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1380}=\sqrt{4*345}=\sqrt{4}*\sqrt{345}=2\sqrt{345}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{345}}{2*15}=\frac{0-2\sqrt{345}}{30} =-\frac{2\sqrt{345}}{30} =-\frac{\sqrt{345}}{15} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{345}}{2*15}=\frac{0+2\sqrt{345}}{30} =\frac{2\sqrt{345}}{30} =\frac{\sqrt{345}}{15} $
| 9/4x-5-6=-13/12x | | -3v-12=-8(v-1) | | 2x+7=11-(2x) | | 2(2c-3)=2 | | 2.7x+225=7.29+15x | | 4/5x=64/125 | | 2(1/4x+2)=3(2/5x)-3 | | 8=4(v+3) | | 23x2+18x=0 | | 4(v-3)-6v=-10 | | 2x-6=4-2x | | 2/5(10)x=108 | | 12x+16x=96 | | p-3/5(10p-5)=7 | | −9x2+x+3=0 | | 3/4=1/2y | | (3x+18)+(9x-27)=99 | | 0=x^2-24x+80 | | 3/5x+2=2/3x-1 | | 5(x+3)—(5x+15)=0 | | 0.0004/x=0.01 | | 2x2−16x+14=0 | | 1/7(150+r)=20 | | (6)(8x)=(16)(3) | | X+8=7x-6 | | 3(x-1.8)=2x+ | | 5x+8+7x=-28 | | (x+7)^2+1=12 | | x+5/7=8/3 | | 1234=1234x+x | | 7(x-19)=35 | | x+5/3=8/3 |